ANTIMATERIA

La antimateria es indistinguible de la materia normal, de la que nosotros estamos hechos, la única diferencia está en su carga eléctrica opuesta. Si una partícula y una antipartícula llegaran a rozarse se anularían la una a la otra, provocando así su aniquilación. Pero, además, la antimateria está llena de secretos sobre el inicio del Universo

ESCALAS DE TEMPERATURA

Existen distintas escalas para medir la temperatura. Aqui citaremos las que son sin duda las más usadas tanto en la vida común como en las ciencias.

Escala Centígrada (C°): También llamada Escala Celsius. Es muy usada en países de habla hispana. Se mide en grados centígrados o Celsius.

Escala Farenheit (F°): Es más común en países anglosajones.

Escala Kelvin (K): Esta es la más usada en el ámbito científico. En química y física por ejemplo.

Un punto muy importante es la manera de poder pasar o transformar un valor de temperatura que esta en una escala a otra.

Por ejemplo si tenemos que pasar una temperatura que esta en grados centígrados a otra de grados Kelvin solo bastara con sumarle al valor 273. Ejemplo

K = 25°C + 273 = 298K

Si tuvieramos una en grados K le restamos 273 para pasarla a la escala Celsius.

°C = 290K – 273 = 17°C.

Entre las escalas Celsius y Farenheit también hay fórmulas de pasaje:

°C = (°F – 32) . 5/9

Si tenemos una temperatura de 86°F

°C = (86°F – 32) . 5/9 = 30°C

La fórmula para convertir °C a °F sale de despejar °F en la anterior:

F = °C . 9/5 + 32

Otra escala que ya practicamente estasin uso salvo en los países anglosajones es la escala Rankine. Equivale a 9/5 de la escala Kelvin. O sea que si queremos calcular la cantidad de grados Rankine multiplicamos a los grados K por 9/5

Ra = K x 9/5

escalas de temperatura

EL TERMÓMETRO Y SUS TIPOS

Es un instrumento de medición de temperatura. Desde su invención ha evolucionado mucho, principalmente a partir del desarrollo de los termómetros electrónicos digitales.

Inicialmente se fabricaron aprovechando el fenómeno de la dilatación, por lo que se prefería el uso de materiales con elevado coeficiente de dilatación, de modo que, al aumentar la temperatura, su estiramiento era fácilmente visible. El metal base que se utilizaba en este tipo de termómetros ha sido el mercurio, encerrado en un tubo de vidrio que incorporaba una escala graduada.

El creador del primer termoscopio fue Galileo Galilei; éste podría considerarse el predecesor del termómetro. Consistía en un tubo de vidrio terminado en una esferacerrada; el extremo abierto se sumergía boca abajo dentro de una mezcla de alcohol yagua, mientras la esfera quedaba en la parte superior. Al calentar el líquido, éste subía por el tubo.

La incorporación, entre 1611 y 1613, de una escala numérica al instrumento de Galileo se atribuye tanto a Francesco Sagredo1 como a Santorio Santorio,2 aunque es aceptada la autoría de éste último en la aparición del termómetro.

En España se prohibió la fabricación de termómetros de mercurio en julio de 2007, por su efecto contaminante.

En América latina, los termómetros de mercurio siguen siendo ampliamente utilizados por la población. No así en hospitales y centros de salud donde por regla general se utilizan termómetros digitales.

 

TIPOS DE TERMOMETROS

Termómetro de gas a volumen constante.

Termómetro exterior que se adhiere a la ventana.

  • Termómetro de mercurio: es un tubo de vidriosellado que contiene mercurio, cuyo volumen cambia con la temperatura de manera uniforme. Este cambio de volumen se aprecia en una escala graduada. El termómetro de mercurio fue inventado por Gabriel Fahrenheit en el año 1714.
  • Pirómetros: termómetros para altas temperaturas, se utilizan en fundiciones, fábricas de vidrio, hornos para cocción de cerámica. Existen varios tipos según su principio de funcionamiento:4
    • Pirómetro óptico: se basan en la ley de Wiende distribución de la radiación térmica, según la cual, el color de la radiación varía con la temperatura. El color de la radiación de la superficie a medir se compara con el color emitido por un filamento que se ajusta con un reóstato Se utilizan para medir temperaturas elevadas, desde 700 °C hasta 3.200 °C, a las cuales se irradia suficiente energía en el espectro visible para permitir la medición óptica.
    • Pirómetro de radiación total: se fundamentan en la ley de Stefan-Boltzmann, según la cual, la intensidad de energía emitida por un cuerpo negroes proporcional a la cuarta potencia de su temperatura absoluta.
    • Pirómetro de infrarrojos: captan la radiación infrarroja, filtrada por una lente, mediante un sensorfoto resistivo, dando lugar a una corriente eléctrica a partir de la cual un circuito electrónico calcula la temperatura. Pueden medir desde temperaturas inferiores a 0 °C hasta valores superiores a 2.000 °C.
    • Pirómetro fotoeléctrico: se basan en el efecto fotoeléctrico, por el cual se liberan electrones de semiconductorescristalinos cuando incide sobre ellos la radiación térmica.
  • Termómetro de lámina bimetálica: Formado por dos láminas de metales de coeficientes de dilatación muy distintos y arrollados dejando el coeficiente más alto en el interior. Se utiliza sobre todo como sensor de temperaturaen el termohigrógrafo.
  • Termómetro de gas: Pueden ser a presión constante o a volumen constante. Este tipo de termómetros son muy exactos y generalmente son utilizados para la calibración de otros termómetros.

Termómetro de gas a volumen constante.

 

 

  • Termómetro digital de exteriores.

 

  • Termómetros clínicos: son los utilizados para medir la temperatura corporal. Los hay tradicionales de mercurio y digitales, teniendo estos últimos algunas ventajas adicionales como su fácil lectura, respuesta rápida, memoria y en algunos modelos alarma vibrante.

 

TERMOMETROS ESPECIALES

 

Termómetro de máxima y mínima.

Para medir ciertos parámetros se emplean termómetros modificados, tales como los siguientes:

  • El termómetro de globo, para medir la temperatura radiante media. Consiste en un termómetro de mercurio que tiene el bulbo dentro de una esfera de metal hueca, pintada de negro de humo. La esfera absorbe radiación de los objetos del entorno más calientes que el aire y emite radiación hacia los más fríos, dando como resultado una medición que tiene en cuenta la radiación. Se utiliza para comprobar las condiciones de comodidad de las personas.
  • El termómetro de bulbo húmedo, para medir la influencia de la humedad en lasensación térmica. Junto con un termómetro ordinario forma un psicrómetro, que sirve para medir humedad relativatensión de vaporpunto de rocío. Se llama de bulbo húmedo porque de su bulbo o depósito parte un paño de algodón empapado de agua, contenida en un que depósito se coloca al lado y más bajo que el bulbo, de forma que por capilaridad está continuamente mojado.
  • El termómetro de máximas y mínimases utilizado en meteorología para saber la temperatura más alta y la más baja del día, y consiste en dos instrumentos montados en un solo aparato. También existen termómetros individuales de máxima o de mínima para usos especiales o de laboratorio.
  • El termógrafo: es un termómetro acoplado a un dispositivo capaz de registrar, gráfica o digitalmente, la temperatura medida en forma continua o a intervalos de tiempo determinado.

BIOGRAFÍA DE DANIEL BERNOULLI


Matemático suizo nacido el 8 de febrero de 1700 y muerto el 17 de marzo de 1782. Miembro de la familia Bernoulli que dio al mundo once grandes matemáticos, a lo largo de cuatro generaciones y quienes contribuyeron de forma notable a la clasificación de las ecuaciones diferenciales y a su reducción a cuadraturas. Hijo de Jean (1667-1748) y sobrino de Jacques (1654-1705), quien destacó por sus trabajos relativos al Cálculo Infinitesimal, sobre probabilidades, etc, los cuales fueron perfeccionados por Jean.

Daniel estudia medicina en Suiza y Alemania, obteniendo el título en 1724. En el mismo año publica parte de sus investigaciones matemáticas y un año después es nombrado profesor de matemáticas de la universidad de San Petersburgo.

En 1733 regresa a Basilea donde imparte docencia en las áreas de Botánica y Anatomía y posteriormente en Física.

Destacan sus investigaciones relativas a trigonometría, cálculo, probabilidad y sobre un nuevo modelo de los gases, considerándosele como uno de los precursores de la teoría cinética de los gases.

Pero, fundamentalmente D. Bernoulli es conocido por sus trabajos dentro de la hidráulica.

En 1738, en su obra Hidrodinámica, Bernoulli establece la ley que lleva su nombre, y que enuncia así: a lo largo de un tubo de flujo la suma de la energía cinética, de la energía potencial debida a la gravedad y la de la energía de presión es constante.

Matemáticamente:

p-p´= pgh +1/2 p (v2 – v´2)

siendo p y p´las presiones a la entrada y la salida del tubo v y v´ las velocidades del líquido a la entrada y a la salida del tubo, h el desnivel del líquido y p su densidad.

Para un punto del tubo de altitud h, la ley anterior queda así:

v2/2+p/p +gh = constante

Esta ley expresa que toda variación de la velocidad de flujo acarrea una variación de presión, y a la inversa, que toda variación de presión acarrea una variación de la velocidad, y tiene numerosas aplicaciones como son el ariete hidráulico , el vaso de Mariotte, las trompas de líquido y el tubo de Pitot:

Si se cierra bruscamente el orificio de un tubo dentro del cual un líquido fluye a la velocidad v, esta velocidad se anula en el extremo así cerrado, y resulta de ello un aumento en la presión; calculable por medio de la ley de Bernoulli. Este considerable aumento provoca un golpe de ariete en el extremo del tubo; si se pone en comunicación con este extremo otro tubo que contenga agua, por ejemplo, se verá subir esta agua por el tubo empalmado.

El tubo de Pitot fue inventado por el físico francés Pitot (1695-1771) y su invención data de 1732, permite medir la velocidad de una corriente dentro de un tubo horizontal aplicando el principio de Bernoulli.

Bernoulli propuso un modelo de la estructura de los gases, en el que consideraba que estos son átomos en continuo movimiento colisionando todos entre sí y con las paredes del recipiente que los contiene; fue el punto de partida de la teoría cinética de los gases, aunque debe recordarse que Euler había intuido esta misma idea al considerar el calor generado por los cuerpos como el debido al movimiento de las partículas más pequeñas de los mismos.

El tratado de hidrodinámica que contiene las proposiciones de la Mecánica de Fluidos conocidas como Teoremas de Bernoulli está contenido en la obra «Danielis Bernoulli hidrodinamice, sen de viribus et motibus fluidorum comentarii opus academiam ab auctore dum petropoli ageret cogestum argentorati (1738)».

También llevó a cabo trabajos matemáticos, algunos de los cuales se encuentran recopilados en «Danielis Bernoulli exercitationes quaedam mathematicae (1724)».

Además durante su vida se ocupó de otros asuntos de lo más variados; como la inoculación, la duración de los matrimonios, de la media de varias observaciones y determinó la hora en el mar cuando no se ve la línea del horizonte.

La Academia de París premió 10 de sus memorias, una de ellas versaba sobre la inclinación de las órbitas planetarias y el premio fue compartido con su padre que vio en él a un rival, también fue premiada otra memoria suya que trataba del flujo y reflujo, en este caso el premio fue compartido con Euler y otros científicos.

BIOGRAFIA DE BLAISE PASCAL

(Clermont-Ferrand, Francia, 1623-París, 1662) Filósofo, físico y matemático francés. Su madre falleció cuando él contaba tres años, a raíz de lo cual su padre se trasladó a París con su familia (1630). Fue un genio precoz a quien su padre inició muy pronto en la geometría e introdujo en el círculo de Mersenne, la Academia, a la que él mismo pertenecía. Allí Pascal se familiarizó con las ideas de Girard Desargues y en 1640 redactó su Ensayo sobre las cónicas (Essai pour les coniques), que contenía lo que hoy se conoce como teorema del hexágono de Pascal.


Blaise Pascal

La designación de su padre como comisario del impuesto real supuso el traslado a Ruán, donde Pascal desarrolló un nuevo interés por el diseño y la construcción de una máquina de sumar; se conservan todavía varios ejemplares del modelo que ideó, algunos de cuyos principios se utilizaron luego en las modernas calculadoras mecánicas.

En Ruán Pascal comenzó también a interesarse por la física, y en especial por la hidrostática, y emprendió sus primeras experiencias sobre el vacío; intervino en la polémica en torno a la existencia del horror vacui en la naturaleza y realizó importantes experimentos (en especial el de Puy de Dôme en 1647) en apoyo de la explicación dada por Torricelli al funcionamiento del barómetro.

La enfermedad indujo a Pascal a regresar a París en el verano de 1647; los médicos le aconsejaron distracción e inició un período mundano que terminó con su experiencia mística del 23 de noviembre de 1654, su segunda conversión (en 1645 había abrazado el jansenismo); convencido de que el camino hacia Dios estaba en el cristianismo y no en la filosofía, Blaise Pascal suspendió su trabajo científico casi por completo.

Pocos meses antes, como testimonia su correspondencia con Fermat, se había ocupado de las propiedades del triángulo aritmético hoy llamado de Pascal y que da los coeficientes de los desarrollos de las sucesivas potencias de un binomio; su tratamiento de dicho triángulo en términos de una «geometría del azar» lo convirtió en uno de los fundadores del cálculo matemático de probabilidades.

En 1658, al parecer con el objeto de olvidarse de un dolor de muelas, Pascal elaboró su estudio de la cicloide, que resultó un importante estímulo en el desarrollo del cálculo diferencial. Desde 1655 frecuentó Port-Royal, donde se había retirado su hermana Jacqueline en 1652. Tomó partido en favor de Arnauld, el general de los jansenistas, y publicó anónimamente sus Provinciales.

El éxito de las cartas lo llevó a proyectar una apología de la religión cristiana; el deterioro de su salud a partir de 1658 frustró, sin embargo, el proyecto, y las notas dispersas relativas a él quedaron más tarde recogidas en sus famosos Pensamientos (Pensées sur la religion, 1669). Aunque rechazó siempre la posibilidad de establecer pruebas racionales de la existencia de Dios, cuya infinitud consideró inabarcable para la razón, admitió no obstante que esta última podía preparar el camino de la fe para combatir el escepticismo. La famosa apuesta de Pascal analiza la creencia en Dios en términos de apuesta sobre su existencia, pues si el hombre cree y finalmente Dios no existe, nada se pierde en realidad.

La tensión de su pensamiento entre la ciencia y la religión quedó reflejada en su admisión de dos principios del conocimiento: la razón (esprit géométrique), orientada hacia las verdades científicas y que procede sistemáticamente a partir de definiciones e hipótesis para avanzar demostrativamente hacia nuevas proposiciones, y el corazón (esprit de finesse), que no se sirve de procedimientos sistemáticos porque posee un poder de comprensión inmediata, repentina y total, en términos de intuición. En esta última se halla la fuente del discernimiento necesario para elegir los valores en que la razón debe cimentar su labor.

BIOGRAFÍA DE ARQUIMIDEZ

(Siracusa, actual Italia, h. 287 a.C. – id., 212 a.C.) Matemático griego. Los grandes progresos de las matemáticas y la astronomía del helenismo son deudores, en buena medida, de los avances científicos anteriores y del legado del saber oriental, pero también de las nuevas oportunidades que brindaba el mundo helenístico. En los inicios de la época helenística se sitúa Euclides, quien legó a la posteridad una prolífica obra de síntesis de los conocimientos de su tiempo que afortunadamente se conservó casi íntegra y se convirtió en un referente casi indispensable hasta la Edad Contemporánea.

Pero el más célebre y prestigioso matemático fue Arquímedes. Sus escritos, de los que se han conservado una decena, son prueba elocuente del carácter polifacético de su saber científico. Hijo del astrónomo Fidias, quien probablemente le introdujo en las matemáticas, aprendió de su padre los elementos de aquella disciplina en la que estaba destinado a superar a todos los matemáticos antiguos, hasta el punto de aparecer como prodigioso, «divino», incluso para los fundadores de la ciencia moderna.

Sus estudios se perfeccionaron en aquel gran centro de la cultura helenística que era la Alejandría de los Tolomeos, en donde Arquímedes fue, hacia el año 243 a.C., discípulo del astrónomo y matemático Conón de Samos, por el que siempre tuvo respeto y admiración.

Allí, después de aprender la no despreciable cultura matemática de la escuela (hacía poco que había muerto el gran Euclides), estrechó relaciones de amistad con otros grandes matemáticos, entre los cuales figuraba Eratóstenes, con el que mantuvo siempre correspondencia, incluso después de su regreso a Sicilia. A Eratóstenes dedicó Arquímedes su Método, en el que expuso su genial aplicación de la mecánica a la geometría, en la que «pesaba» imaginariamente áreas y volúmenes desconocidos para determinar su valor. Regresó luego a Siracusa, donde se dedicó de lleno al trabajo científico.

Al parecer, más tarde volvió a Egipto durante algún tiempo como «ingeniero» de Tolomeo, y diseñó allí su primer gran invento, la «coclea», una especie de máquina que servía para elevar las aguas y regar de este modo regiones a las que no llegaba la inundación del Nilo. Pero su actividad madura de científico se desenvolvió por completo en Siracusa, donde gozaba del favor del tirano Hierón II. Allí alternó inventos mecánicos con estudios de mecánica teórica y de altas matemáticas, imprimiendo siempre en ellos su espíritu característico, maravillosa fusión de atrevimiento intuitivo y de rigor metódico.

Sus inventos mecánicos son muchos, y más aún los que le atribuyó la leyenda (entre estos últimos debemos rechazar el de los espejos ustorios, inmensos espejos con los que habría incendiado la flota romana que sitiaba Siracusa); pero son históricas, además de la «coclea», numerosas máquinas de guerra destinadas a la defensa militar de la ciudad, así como una «esfera», grande e ingenioso planetario mecánico que, tras la toma de Siracusa, fue llevado a Roma como botín de guerra, y allí lo vieron todavía Cicerón y quizás Ovidio.


Arquímedes en su representación más
tradicional: abstraído y meditabundo

La biografía de Arquímedes está más poblada de anécdotas sabrosas que de hechos como los anteriormente relatados. En torno a él tejieron la trama de una figura legendaria primero sus conciudadanos y los romanos, después los escritores antiguos y por último los árabes; ya Plutarco atribuyó una «inteligencia sobrehumana» a este gran matemático e ingeniero.

La más divulgada de estas anécdotas la relata Vitruvio y se refiere al método que utilizó para comprobar si existió fraude en la confección de una corona de oro encargada por Hierón II, tirano de Siracusa y protector de Arquímedes, y quizás incluso pariente suyo. Se cuenta que el tirano, sospechando que el joyero le había engañado poniendo plata en el interior de la corona, pidió a Arquímedes que determinase los metales de que estaba compuesta sin romperla.

Arquímedes meditó largo tiempo en el difícil problema, hasta que un día, hallándose en un establecimiento de baños, advirtió que el agua se desbordaba de la bañera a medida que se iba introduciendo en ella. Esta observación le inspiró la idea que le permitió resolver la cuestión que le planteó el tirano: si sumergía la corona en un recipiente lleno hasta el borde y medía el agua que se desbordaba, conocería su volumen; luego podría comparar el volumen de la corona con el volumen de un objeto de oro del mismo peso y comprobar si eran iguales. Se cuenta que, impulsado por la alegría, Arquímedes corrió desnudo por las calles de Siracusa hacia su casa gritando «Eureka! Eureka!», es decir, «¡Lo encontré! ¡Lo encontré!».

La idea de Arquímedes está reflejada en una de las proposiciones iniciales de su obra Sobre los cuerpos flotantes, pionera de la hidrostática, que sería estudiada cuidadosamente por los fundadores de la ciencia moderna, entre ellos Galileo. Corresponde al famoso principio de Arquímedes (todo cuerpo sumergido en un líquido experimenta un empuje hacia arriba igual al peso del volumen de agua que desaloja), y, como allí se explica, haciendo uso de él es posible calcular la ley de una aleación, lo cual le permitió descubrir que el orfebre había cometido fraude.

Según otra anécdota famosa, recogida entre otros por Plutarco, Arquímedes se hallaba tan entusiasmado por la potencia que conseguía obtener con sus máquinas, capaces de levantar grandes pesos con esfuerzo relativamente pequeño, que aseguró al tirano que, si le daban un punto de apoyo, conseguiría mover la Tierra; se cree que, exhortado por el rey a que pusiera en práctica su aseveración, logró sin esfuerzo aparente, mediante un complicado sistema de poleas, poner en movimiento un navío de tres mástiles con su carga.

Análoga concentración mental y abstracción en la meditación demuestra el episodio de su muerte. Según se dice, los ingenios bélicos cuya paternidad le atribuye la tradición permitieron a Siracusa resistir tres años el asedio romano, antes de caer en manos de las tropas de Marcelo. Mientras saqueaban Siracusa los soldados de Marcelo, que al fin habían conseguido expugnar la ciudad, el viejo matemático estaba meditando, olvidado de todo, en sus problemas de geometría.

Sorprendido por un soldado que le preguntó quién era, Arquímedes no le respondió, o, según otra versión, le respondió irritado que no le molestara ni le estropeara los dibujos que había trazado en la arena; y el soldado, encolerizado, lo mató. Marcelo se entristeció mucho al saberlo y mandó que le levantaran un monumento, sacando su figura del tratado Sobre la esfera y del cilindro. Cicerón reconoció por esta figura, muchos años más tarde, su tumba olvidada.

Esta pasión de Arquímedes por la erudición, que le causó la muerte, fue también la que, en vida, se dice que hizo que se olvidara hasta de comer y que soliera entretenerse trazando dibujos geométricos en las cenizas del hogar o incluso, al ungirse, en los aceites que cubrían su piel. Esta imagen contrasta con la del inventor de máquinas de guerra del que hablan Polibio y Tito Livio; pero, como señala Plutarco, su interés por esa maquinaria estribó únicamente en el hecho de que planteó su diseño como mero entretenimiento intelectual.

El esfuerzo de Arquímedes por convertir la estática en un cuerpo doctrinal riguroso es comparable al realizado por Euclides con el mismo propósito respecto a la geometría. Tal esfuerzo se refleja de modo especial en dos de sus libros; en el primero de ellos, Equilibrios planos, fundamentó la ley de la palanca, deduciéndola a partir de un número reducido de postulados, y determinó el centro de gravedad de paralelogramos, triángulos, trapecios y el de un segmento de parábola.

En la obra Sobre la esfera y el cilindro utilizó el método denominado de exhaustión, precedente del cálculo integral, para determinar la superficie de una esfera y para establecer la relación entre una esfera y el cilindro circunscrito en ella. Este último resultado pasó por ser su teorema favorito, que por expreso deseo suyo se grabó sobre su tumba, hecho gracias al cual Cicerón pudo recuperar la figura de Arquímedes cuando ésta había sido ya olvidada.